Product:

Libgcrypt

(Gnupg)
Repositories

Unknown:

This might be proprietary software.

#Vulnerabilities 15
Date Id Summary Products Score Patch Annotated
2019-06-20 CVE-2019-12904 In Libgcrypt 1.8.4, the C implementation of AES is vulnerable to a flush-and-reload side-channel attack because physical addresses are available to other processes. (The C implementation is used on platforms where an assembly-language implementation is unavailable.) NOTE: the vendor's position is that the issue report cannot be validated because there is no description of an attack Libgcrypt, Leap 5.9
2016-04-19 CVE-2015-7511 Libgcrypt before 1.6.5 does not properly perform elliptic-point curve multiplication during decryption, which makes it easier for physically proximate attackers to extract ECDH keys by measuring electromagnetic emanations. Ubuntu_linux, Debian_linux, Libgcrypt 2.0
2016-12-13 CVE-2016-6313 The mixing functions in the random number generator in Libgcrypt before 1.5.6, 1.6.x before 1.6.6, and 1.7.x before 1.7.3 and GnuPG before 1.4.21 make it easier for attackers to obtain the values of 160 bits by leveraging knowledge of the previous 4640 bits. Ubuntu_linux, Debian_linux, Gnupg, Libgcrypt 5.3
2017-06-11 CVE-2017-9526 In Libgcrypt before 1.7.7, an attacker who learns the EdDSA session key (from side-channel observation during the signing process) can easily recover the long-term secret key. 1.7.7 makes a cipher/ecc-eddsa.c change to store this session key in secure memory, to ensure that constant-time point operations are used in the MPI library. Libgcrypt 5.9
2017-08-29 CVE-2017-0379 Libgcrypt before 1.8.1 does not properly consider Curve25519 side-channel attacks, which makes it easier for attackers to discover a secret key, related to cipher/ecc.c and mpi/ec.c. Debian_linux, Libgcrypt 7.5
2018-06-13 CVE-2018-0495 Libgcrypt before 1.7.10 and 1.8.x before 1.8.3 allows a memory-cache side-channel attack on ECDSA signatures that can be mitigated through the use of blinding during the signing process in the _gcry_ecc_ecdsa_sign function in cipher/ecc-ecdsa.c, aka the Return Of the Hidden Number Problem or ROHNP. To discover an ECDSA key, the attacker needs access to either the local machine or a different virtual machine on the same physical host. Ubuntu_linux, Debian_linux, Libgcrypt, Traffic_director, Ansible_tower, Enterprise_linux_desktop, Enterprise_linux_server, Enterprise_linux_workstation 4.7
2018-07-26 CVE-2017-7526 libgcrypt before version 1.7.8 is vulnerable to a cache side-channel attack resulting into a complete break of RSA-1024 while using the left-to-right method for computing the sliding-window expansion. The same attack is believed to work on RSA-2048 with moderately more computation. This side-channel requires that attacker can run arbitrary software on the hardware where the private RSA key is used. Ubuntu_linux, Debian_linux, Libgcrypt 6.8
2018-02-07 CVE-2018-6829 cipher/elgamal.c in Libgcrypt through 1.8.2, when used to encrypt messages directly, improperly encodes plaintexts, which allows attackers to obtain sensitive information by reading ciphertext data (i.e., it does not have semantic security in face of a ciphertext-only attack). The Decisional Diffie-Hellman (DDH) assumption does not hold for Libgcrypt's ElGamal implementation. Libgcrypt 7.5
2019-11-29 CVE-2015-0837 The mpi_powm function in Libgcrypt before 1.6.3 and GnuPG before 1.4.19 allows attackers to obtain sensitive information by leveraging timing differences when accessing a pre-computed table during modular exponentiation, related to a "Last-Level Cache Side-Channel Attack." Debian_linux, Gnupg, Libgcrypt N/A
2019-11-29 CVE-2014-3591 Libgcrypt before 1.6.3 and GnuPG before 1.4.19 does not implement ciphertext blinding for Elgamal decryption, which allows physically proximate attackers to obtain the server's private key by determining factors using crafted ciphertext and the fluctuations in the electromagnetic field during multiplication. Debian_linux, Gnupg, Libgcrypt N/A