Note:
This project will be discontinued after December 13, 2021. [more]
Product:
Wasmtime
(Bytecodealliance)Repositories |
Unknown: This might be proprietary software. |
#Vulnerabilities | 15 |
Date | Id | Summary | Products | Score | Patch | Annotated |
---|---|---|---|---|---|---|
2022-03-31 | CVE-2022-24791 | Wasmtime is a standalone JIT-style runtime for WebAssembly, using Cranelift. There is a use after free vulnerability in Wasmtime when both running Wasm that uses externrefs and enabling epoch interruption in Wasmtime. If you are not explicitly enabling epoch interruption (it is disabled by default) then you are not affected. If you are explicitly disabling the Wasm reference types proposal (it is enabled by default) then you are also not affected. The use after free is caused by Cranelift... | Wasmtime | 9.8 | ||
2022-06-28 | CVE-2022-31104 | Wasmtime is a standalone runtime for WebAssembly. In affected versions wasmtime's implementation of the SIMD proposal for WebAssembly on x86_64 contained two distinct bugs in the instruction lowerings implemented in Cranelift. The aarch64 implementation of the simd proposal is not affected. The bugs were presented in the `i8x16.swizzle` and `select` WebAssembly instructions. The `select` instruction is only affected when the inputs are of `v128` type. The correspondingly affected Cranelift... | Cranelift\-Codegen, Wasmtime | 5.6 | ||
2022-07-21 | CVE-2022-31146 | Wasmtime is a standalone runtime for WebAssembly. There is a bug in the Wasmtime's code generator, Cranelift, where functions using reference types may be incorrectly missing metadata required for runtime garbage collection. This means that if a GC happens at runtime then the GC pass will mistakenly think these functions do not have live references to GC'd values, reclaiming them and deallocating them. The function will then subsequently continue to use the values assuming they had not been... | Cranelift\-Codegen, Wasmtime | 8.8 | ||
2022-07-22 | CVE-2022-31169 | Wasmtime is a standalone runtime for WebAssembly. There is a bug in Wasmtime's code generator, Cranelift, for AArch64 targets where constant divisors can result in incorrect division results at runtime. This affects Wasmtime prior to version 0.38.2 and Cranelift prior to 0.85.2. This issue only affects the AArch64 platform. Other platforms are not affected. The translation rules for constants did not take into account whether sign or zero-extension should happen which resulted in an... | Cranelift\-Codegen, Wasmtime | 7.5 | ||
2022-11-10 | CVE-2022-39392 | Wasmtime is a standalone runtime for WebAssembly. Prior to version 2.0.2, there is a bug in Wasmtime's implementation of its pooling instance allocator when the allocator is configured to give WebAssembly instances a maximum of zero pages of memory. In this configuration, the virtual memory mapping for WebAssembly memories did not meet the compiler-required configuration requirements for safely executing WebAssembly modules. Wasmtime's default settings require virtual memory page faults to... | Wasmtime | 7.4 | ||
2022-11-10 | CVE-2022-39394 | Wasmtime is a standalone runtime for WebAssembly. Prior to version 2.0.2, there is a bug in Wasmtime's C API implementation where the definition of the `wasmtime_trap_code` does not match its declared signature in the `wasmtime/trap.h` header file. This discrepancy causes the function implementation to perform a 4-byte write into a 1-byte buffer provided by the caller. This can lead to three zero bytes being written beyond the 1-byte location provided by the caller. This bug has been patched... | Wasmtime | 9.8 | ||
2023-03-08 | CVE-2023-26489 | wasmtime is a fast and secure runtime for WebAssembly. In affected versions wasmtime's code generator, Cranelift, has a bug on x86_64 targets where address-mode computation mistakenly would calculate a 35-bit effective address instead of WebAssembly's defined 33-bit effective address. This bug means that, with default codegen settings, a wasm-controlled load/store operation could read/write addresses up to 35 bits away from the base of linear memory. Due to this bug, however, addresses up to... | Cranelift\-Codegen, Wasmtime | 9.9 | ||
2023-03-08 | CVE-2023-27477 | wasmtime is a fast and secure runtime for WebAssembly. Wasmtime's code generation backend, Cranelift, has a bug on x86_64 platforms for the WebAssembly `i8x16.select` instruction which will produce the wrong results when the same operand is provided to the instruction and some of the selected indices are greater than 16. There is an off-by-one error in the calculation of the mask to the `pshufb` instruction which causes incorrect results to be returned if lanes are selected from the second... | Cranelift\-Codegen, Wasmtime | 4.3 | ||
2023-04-27 | CVE-2023-30624 | Wasmtime is a standalone runtime for WebAssembly. Prior to versions 6.0.2, 7.0.1, and 8.0.1, Wasmtime's implementation of managing per-instance state, such as tables and memories, contains LLVM-level undefined behavior. This undefined behavior was found to cause runtime-level issues when compiled with LLVM 16 which causes some writes, which are critical for correctness, to be optimized away. Vulnerable versions of Wasmtime compiled with Rust 1.70, which is currently in beta, or later are... | Wasmtime | 8.8 | ||
2023-09-15 | CVE-2023-41880 | Wasmtime is a standalone runtime for WebAssembly. Wasmtime versions from 10.0.0 to versions 10.02, 11.0.2, and 12.0.1 contain a miscompilation of the WebAssembly `i64x2.shr_s` instruction on x86_64 platforms when the shift amount is a constant value that is larger than 32. Only x86_64 is affected so all other targets are not affected by this. The miscompilation results in the instruction producing an incorrect result, namely the low 32-bits of the second lane of the vector are derived from... | Wasmtime | 5.3 |